The membrane proteome of Halobacterium salinarum.

نویسندگان

  • Christian Klein
  • Carolina Garcia-Rizo
  • Birgit Bisle
  • Beatrix Scheffer
  • Hans Zischka
  • Friedhelm Pfeiffer
  • Frank Siedler
  • Dieter Oesterhelt
چکیده

The identification of 114 integral membrane proteins from Halobacterium salinarum was achieved using liquid chromatography/tandem mass spectrometric (LC/MS/MS) techniques, representing 20% of the predicted alpha-helical transmembrane proteins of the genome. For this experiment, a membrane preparation with only minor contamination by soluble proteins was prepared. From this membrane preparation a number of peripheral membrane proteins were identified by the classical two dimensional gel electrophoresis (2-DE) approach, but identification of integral membrane proteins largely failed with only a very few being identified. By use of a fluorescently labeled membrane preparation, we document that this is caused by an irreversible precipitation of the membrane proteins upon isoelectric focusing (IEF). Attempts to overcome this problem by using alternative IEF methods and IEF strip solubilisation techniques were not successful, and we conclude that the classical 2-DE approach is not suited for the identification of integral membrane proteins. Computational analysis showed that the identification of integral membrane proteins is further complicated by the generation of tryptic peptides, which are unfavorable for matrix assisted laser desorption/ionization time of flight mass spectrometric peptide mass fingerprint analysis. Together with the result from the analysis of the cytosolic proteome (see preceding paper), we could identify 34% (943) of all gene products in H. salinarum which can be theoretically expressed. This is a cautious estimate as very stringent criteria were applied for identification. These results are available under www.halolex.mpg.de.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of the cytosolic proteome of Halobacterium salinarum and its implication for genome annotation.

The halophilic archaeon Halobacterium salinarum (strain R1, DSM 671) contains 2784 protein-coding genes as derived from the genome sequence. The cytosolic proteome containing 2042 proteins was separated by two-dimensional gel electrophoresis (2-DE) and systematically analyzed by a semi-automatic procedure. A reference map was established taking into account the narrow isoelectric point (pI) dis...

متن کامل

Osmotic shock induces the presence of glycocardiolipin in the purple membrane of Halobacterium salinarum.

In the purple membrane (PM) of Halobacterium salinarum is present a phospholipid dimer consisting of sulfo-triglycosyl-diether (S-TGD-1) esterified to the phosphate group of phosphatidic acid (PA), i.e., S-TGD-1-PA, called glycocardiolipin (GlyC) (Corcelli, A., M. Colella, G. Mascolo, F. P. Fanizzi, and M. Kates. A novel glycolipid and phospholipid in the purple membrane. 2000. Biochemistry. 39...

متن کامل

Identification of a lycopene beta-cyclase required for bacteriorhodopsin biogenesis in the archaeon Halobacterium salinarum.

Biogenesis of the light-driven proton pump bacteriorhodopsin in the archaeon Halobacterium salinarum requires coordinate synthesis of the bacterioopsin apoprotein and carotenoid precursors of retinal, which serves as a covalently bound cofactor. As a step towards elucidating the mechanism and regulation of carotenoid metabolism during bacteriorhodopsin biogenesis, we have identified an H. salin...

متن کامل

Resistance to Ionizing Radiation and Oxidative Stress in Halobacterium Salinarum Nrc-1

Title of Document: RESISTANCE TO IONIZING RADIATION AND OXIDATIVE STRESS IN HALOBACTERIUM SALINARUM NRC-1 Courtney Kathryn Robinson, Master of Science, 2009 Directed By: Professor Jonathan Dinman, Department of Cell Biology and Molecular Genetics Oxidative stress results from environmental challenges that cause unchecked production of reactive oxygen species (ROS). We analyzed the cellular dama...

متن کامل

Neutron scattering: a tool to detect in vivo thermal stress effects at the molecular dynamics level in micro-organisms.

In vivo molecular dynamics in Halobacterium salinarum cells under stress conditions was measured by neutron scattering experiments coupled with microbiological characterization. Molecular dynamics alterations were detected with respect to unstressed cells, reflecting a softening of protein structures consistent with denaturation. The experiments indicated that the neutron scattering method prov...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proteomics

دوره 5 1  شماره 

صفحات  -

تاریخ انتشار 2005